INTRODUCTION
Human Heart
The human heart is a hollow, pear-shaped organ about the size of a fist. The heart is made of muscle that rhythmically contracts, or beats, pumping blood throughout the body. Oxygen-poor blood from the body enters the heart from two large blood vessels, the inferior vena cava and the superior vena cava, and collects in the right atrium. When the atrium fills, it contracts, and blood passes through the tricuspid valve into the right ventricle. When the ventricle becomes full, it starts to contract, and the tricuspid valve closes to prevent blood from moving back into the atrium. As the right ventricle contracts, it forces blood into the pulmonary artery, which carries blood to the lungs to pick up fresh oxygen. When blood exits the right ventricle, the ventricle relaxes and the pulmonary valve shuts, preventing blood from passing back into the ventricle. Blood returning from the lungs to the heart collects in the left atrium. When this chamber contracts, blood flows through the mitral valve into the left ventricle. The left ventricle fills and begins to contract, and the mitral valve between the two chambers closes. In the final phase of blood flow through the heart, the left ventricle contracts and forces blood into the aorta. After the blood in the left ventricle has been forced out, the ventricle begins to relax, and the aortic valve at the opening of the aorta closes.
© Microsoft Corporation. All Rights Reserved.
Heart, in anatomy, hollow muscular organ that pumps blood through the body. The heart, blood, and blood vessels make up the circulatory system, which is responsible for distributing oxygen and nutrients to the body and carrying away carbon dioxide and other waste products. The heart is the circulatory system’s power supply. It must beat ceaselessly because the body’s tissues—especially the brain and the heart itself—depend on a constant supply of oxygen and nutrients delivered by the flowing blood. If the heart stops pumping blood for more than a few minutes, death will result.
The human heart is shaped like an upside-down pear and is located slightly to the left of center inside the chest cavity. About the size of a closed fist, the heart is made primarily of muscle tissue that contracts rhythmically to propel blood to all parts of the body. This rhythmic contraction begins in the developing embryo about three weeks after conception and continues throughout an individual’s life. The muscle rests only for a fraction of a second between beats. Over a typical life span of 76 years, the heart will beat nearly 2.8 billion times and move 169 million liters (179 million quarts) of blood.
Since prehistoric times people have had a sense of the heart’s vital importance. Cave paintings from 20,000 years ago depict a stylized heart inside the outline of hunted animals such as bison and elephant. The ancient Greeks believed the heart was the seat of intelligence. Others believed the heart to be the source of the soul or of the emotions—an idea that persists in popular culture and various verbal expressions, such as heartbreak, to the present day.
STRUCTURE OF THE HEART
Cardiac Muscle
Cardiac muscle is a unique muscle tissue found only in the heart. Unlike most forms of muscle, which are stimulated to contract by nerves or hormones, certain cardiac muscle cells can contract spontaneously. Without a constant supply of oxygen, cardiac muscle will die, and heart attacks occur from the damage caused by insufficient blood supply to cardiac muscle.
G.W. Willis/Tony Stone Images
The human heart has four chambers. The upper two chambers, the right and left atria, are receiving chambers for blood. The atria are sometimes known as auricles. They collect blood that pours in from veins, blood vessels that return blood to the heart. The heart’s lower two chambers, the right and left ventricles, are the powerful pumping chambers. The ventricles propel blood into arteries, blood vessels that carry blood away from the heart.
Heart Valve
Thin, fibrous flaps called valves lie at the opening of the heart's pulmonary artery and aorta. Valves are also present between each atrium and ventricle of the heart. Valves prevent blood from flowing backward in the heart. In this illustration of the pulmonary valve, as the heart contracts, blood pressure builds and pushes blood up against the pulmonary valve, forcing it to open. As the heart relaxes between one beat and the next, blood pressure falls. Blood flows back from the pulmonary artery, forcing the pulmonary valve to close, and preventing backflow of blood.
© Microsoft Corporation. All Rights Reserved.
A wall of tissue separates the right and left sides of the heart. Each side pumps blood through a different circuit of blood vessels: The right side of the heart pumps oxygen-poor blood to the lungs, while the left side of the heart pumps oxygen-rich blood to the body. Blood returning from a trip around the body has given up most of its oxygen and picked up carbon dioxide in the body’s tissues. This oxygen-poor blood feeds into two large veins, the superior vena cava and inferior vena cava, which empty into the right atrium of the heart.
False-Color Angiogram of a Healthy Human Heart
The coronary arteries, named because of the way they encircle the heart muscle like a crown, provide a constant supply of oxygen and nutrients to the heart. In this angiogram, the main coronary arteries appear as yellow ribbons across the heart.
Science Source/Photo Researchers, Inc.
The right atrium conducts blood to the right ventricle, and the right ventricle pumps blood into the pulmonary artery. The pulmonary artery carries the blood to the lungs, where it picks up a fresh supply of oxygen and eliminates carbon dioxide. The blood, now oxygen-rich, returns to the heart through the pulmonary veins, which empty into the left atrium. Blood passes from the left atrium into the left ventricle, from where it is pumped out of the heart into the aorta, the body’s largest artery. Smaller arteries that branch off the aorta distribute blood to various parts of the body.
Heart Valves
Four valves within the heart prevent blood from flowing backward in the heart. The valves open easily in the direction of blood flow, but when blood pushes against the valves in the opposite direction, the valves close. Two valves, known as atrioventricular valves, are located between the atria and ventricles. The right atrioventricular valve is formed from three flaps of tissue and is called the tricuspid valve. The left atrioventricular valve has two flaps and is called the bicuspid or mitral valve. The other two heart valves are located between the ventricles and arteries. They are called semilunar valves because they each consist of three half-moon-shaped flaps of tissue. The right semilunar valve, between the right ventricle and pulmonary artery, is also called the pulmonary valve. The left semilunar valve, between the left ventricle and aorta, is also called the aortic valve.
Myocardium
Muscle tissue, known as myocardium or cardiac muscle, wraps around a scaffolding of tough connective tissue to form the walls of the heart’s chambers. The atria, the receiving chambers of the heart, have relatively thin walls compared to the ventricles, the pumping chambers. The left ventricle has the thickest walls—nearly 1 cm (0.5 in) thick in an adult—because it must work the hardest to propel blood to the farthest reaches of the body.
Pericardium
A tough, double-layered sac known as the pericardium surrounds the heart. The inner layer of the pericardium, known as the epicardium, rests directly on top of the heart muscle. The outer layer of the pericardium attaches to the breastbone and other structures in the chest cavity and helps hold the heart in place. Between the two layers of the pericardium is a thin space filled with a watery fluid that helps prevent these layers from rubbing against each other when the heart beats.
Endocardium
The inner surfaces of the heart’s chambers are lined with a thin sheet of shiny, white tissue known as the endocardium. The same type of tissue, more broadly referred to as endothelium, also lines the body’s blood vessels, forming one continuous lining throughout the circulatory system. This lining helps blood flow smoothly and prevents blood clots from forming inside the circulatory system.
Coronary Arteries
The heart is nourished not by the blood passing through its chambers but by a specialized network of blood vessels. Known as the coronary arteries, these blood vessels encircle the heart like a crown. About 5 percent of the blood pumped to the body enters the coronary arteries, which branch from the aorta just above where it emerges from the left ventricle. Three main coronary arteries—the right, the left circumflex, and the left anterior descending—nourish different regions of the heart muscle. From these three arteries arise smaller branches that enter the muscular walls of the heart to provide a constant supply of oxygen and nutrients. Veins running through the heart muscle converge to form a large channel called the coronary sinus, which returns blood to the right atrium.
FUNCTION OF THE HEART
The heart’s duties are much broader than simply pumping blood continuously throughout life. The heart must also respond to changes in the body’s demand for oxygen. The heart works very differently during sleep, for example, than in the middle of a 5-km (3-mi) run. Moreover, the heart and the rest of the circulatory system can respond almost instantaneously to shifting situations—when a person stands up or lies down, for example, or when a person is faced with a potentially dangerous situation.
Cardiac Cycle
Heart
© Microsoft Corporation. All Rights Reserved.
Although the right and left halves of the heart are separate, they both contract in unison, producing a single heartbeat. The sequence of events from the beginning of one heartbeat to the beginning of the next is called the cardiac cycle. The cardiac cycle has two phases: diastole, when the heart’s chambers are relaxed, and systole, when the chambers contract to move blood. During the systolic phase, the atria contract first, followed by contraction of the ventricles. This sequential contraction ensures efficient movement of blood from atria to ventricles and then into the arteries. If the atria and ventricles contracted simultaneously, the heart would not be able to move as much blood with each beat.
Stethoscope
Used to listen to sounds arising especially from the heart and lungs, a stethoscope has a two-part sound-detecting device at one end. The bell, bowl-shaped with a hole in the center, detects low-pitched sounds when the rim is pressed against the skin. The other side, called the diaphragm, has a thin, flat, plastic cover. The diaphragm detects high-pitched sounds. A doctor hears these sounds through the earpieces of the stethoscope as they pass up the Y-shaped rubber tubing.
Herbert Wagner/Phototake NYC
During diastole, both atria and ventricles are relaxed, and the atrioventricular valves are open. Blood pours from the veins into the atria, and from there into the ventricles. In fact, most of the blood that enters the ventricles simply pours in during diastole. Systole then begins as the atria contract to complete the filling of the ventricles. Next, the ventricles contract, forcing blood out through the semilunar valves and into the arteries, and the atrioventricular valves close to prevent blood from flowing back into the atria. As pressure rises in the arteries, the semilunar valves snap shut to prevent blood from flowing back into the ventricles. Diastole then begins again as the heart muscle relaxes—the atria first, followed by the ventricles—and blood begins to pour into the heart once more.
Blood Pressure Check
A patient’s blood pressure is checked through the use of a sphygmomanometer. A rubber cuff is wrapped around the upper arm and inflated, compressing the artery to stop the blood flow. A stethoscope is placed on the arm to listen for the return of the blood as the cuff gradually deflates. Readings taken at the point when the blood forcefully returns and when it is flowing smoothly again determine the blood pressure.
John Greim/Medichrome/The Stock Shop
A health-care professional uses an instrument known as a stethoscope to detect internal body sounds, including the sounds produced by the heart as it is beating. The characteristic heartbeat sounds are made by the valves in the heart—not by the contraction of the heart muscle itself. The sound comes from the leaflets of the valves slapping together. The closing of the atrioventricular valves, just before the ventricles contract, makes the first heart sound. The second heart sound is made when the semilunar valves snap closed. The first heart sound is generally longer and lower than the second, producing a heartbeat that sounds like lub-dup, lub-dup, lub-dup.
Blood pressure, the pressure exerted on the walls of blood vessels by the flowing blood, also varies during different phases of the cardiac cycle. Blood pressure in the arteries is higher during systole, when the ventricles are contracting, and lower during diastole, as the blood ejected during systole moves into the body’s capillaries. Blood pressure is measured in millimeters (mm) of mercury using a sphygmomanometer, an instrument that consists of a pressure-recording device and an inflatable cuff that is usually placed around the upper arm. Normal blood pressure in an adult is less than 120 mm of mercury during systole, and less than 80 mm of mercury during diastole. Blood pressure is usually noted as a ratio of systolic pressure to diastolic pressure—for example, 120/80. A person’s blood pressure may increase for a short time during moments of stress or strong emotions. However, a prolonged or constant elevation of blood pressure, a condition known as hypertension, can increase a person’s risk for heart attack, stroke, heart and kidney failure, and other health problems.
Generation of the Heartbeat
Electrocardiograph
An electrocardiograph (ECG or EKG) records the electrical activity of the heart. Preceding each contraction of the heart muscle is an electrical impulse generated in the sinoatrial node; the waves displayed in an ECG trace the path of that impulse as it spreads through the heart. Irregularities in an ECG reflect disorders in the muscle, blood supply, or neural control of the heart.
Hank Morgan/Science Source/Photo Researchers, Inc.
Unlike most muscles, which rely on nerve impulses to cause them to contract, heart muscle can contract of its own accord. Certain heart muscle cells have the ability to contract spontaneously, and these cells generate electrical signals that spread to the rest of the heart and cause it to contract with a regular, steady beat.
The heartbeat begins with a small group of specialized muscle cells located in the upper right-hand corner of the right atrium. This area is known as the sinoatrial (SA) node. Cells in the SA node generate their electrical signals more frequently than cells elsewhere in the heart, so the electrical signals generated by the SA node synchronize the electrical signals traveling to the rest of the heart. For this reason, the SA node is also known as the heart’s pacemaker.
Impulses generated by the SA node spread rapidly throughout the atria, so that all the muscle cells of the atria contract virtually in unison. Electrical impulses cannot be conducted through the partition between the atria and ventricles, which is primarily made of fibrous connective tissue rather than muscle cells. The impulses from the SA node are carried across this connective tissue partition by a small bridge of muscle called the atrioventricular conduction system. The first part of this system is a group of cells at the lower margin of the right atrium, known as the atrioventricular (AV) node. Cells in the AV node conduct impulses relatively slowly, introducing a delay of about two-tenths of a second before an impulse reaches the ventricles. This delay allows time for the blood in the atria to empty into the ventricles before the ventricles begin contracting.
After making its way through the AV node, an impulse passes along a group of muscle fibers called the bundle of His, which span the connective tissue wall separating the atria from the ventricles. Once on the other side of that wall, the impulse spreads rapidly among the muscle cells that make up the ventricles. The impulse travels to all parts of the ventricles with the help of a network of fast-conducting fibers called Purkinje fibers. These fibers are necessary because the ventricular walls are so thick and massive. If the impulse had to spread directly from one muscle cell to another, different parts of the ventricles would not contract together, and the heart would not pump blood efficiently. Although this complicated circuit has many steps, an electrical impulse spreads from the SA node throughout the heart in less than one second.
The journey of an electrical impulse around the heart can be traced by a machine called an electrocardiograph (see Electrocardiography). This instrument consists of a recording device attached to electrodes that are placed at various points on a person’s skin. The recording device measures different phases of the heartbeat and traces these patterns as peaks and valleys in a graphic image known as an electrocardiogram (ECG, sometimes known as EKG). Changes or abnormalities in the heartbeat or in the heart’s rate of contraction register on the ECG, helping doctors diagnose heart problems or identify damage from a heart attack.
Control of the Heart Rate
Autonomic Nervous System
The autonomic nervous system directs all activities of the body that occur without a person’s conscious control, such as heartbeat, breathing, and food digestion. It has two parts: the sympathetic division, which is most active in times of stress, and the parasympathetic division, which controls maintenance activities and helps conserve the body’s energy.
© Microsoft Corporation. All Rights Reserved.
In an adult, resting heart rate is normally about 70 beats per minute. However, the heart can beat up to three times faster—at more than 200 beats per minute—when a person is exercising vigorously. Younger people have faster resting heart rates than adults do. The normal heart rate is about 120 beats per minute in infants and about 100 beats per minute in young children. Many athletes, by contrast, often have relatively slow resting heart rates because physical training makes the heart stronger and enables it to pump the same amount of blood with fewer beats. An athlete’s resting heart rate may be only 40 to 60 beats per minute.
Although the SA node generates the heartbeat, impulses from nerves cause the heart to speed up or slow down almost instantaneously (see Nervous System). The nerves that affect heart rate are part of the autonomic nervous system, which directs activities of the body that are not under conscious control. The autonomic nervous system is made up of two types of nerves, sympathetic and parasympathetic fibers. These fibers come from the spinal cord or brain and deliver impulses to the SA node and other parts of the heart.
Sympathetic nerve fibers increase the heart rate. These fibers are activated in times of stress, and they play a role in the fight or flight response that prepares humans and other animals to respond to danger. In addition to fear or physical danger, exercising or experiencing a strong emotion can also activate sympathetic fibers and cause an increase in heart rate. In contrast, parasympathetic nerve fibers slow the heart rate. In the absence of nerve impulses the SA node would fire about 100 times each minute—parasympathetic fibers are responsible for slowing the heart to the normal rate of about 70 beats per minute.
Chemicals known as hormones carried in the bloodstream also influence the heart rate. Hormones generally take effect more slowly than nerve impulses. They work by attaching to receptors, proteins on the surface of heart muscle cells, to change the way the muscle cells contract. Epinephrine (also called adrenaline) is a hormone made by the adrenal glands, which are located on top of the kidneys. Released during times of stress, epinephrine increases the heart rate much as sympathetic nerve fibers do. Thyroid hormone, which regulates the body’s overall metabolism, also increases the heart rate. Other chemicals—especially calcium, potassium, and sodium—can affect heart rate and rhythm.
Cardiac Output
Swimming Meet
During exercise, the amount of blood pumped by the heart increases in order to deliver more oxygen to the body’s muscles. In a healthy adult, cardiac output—a measure of the amount of blood pumped by the heart—can increase from 3 liters of blood per minute per square meter of body surface to 18 liters per minute per square meter of body surface.
Tim Davis/Photo Researchers, Inc.
To determine overall heart function, doctors measure cardiac output, the amount of blood pumped by each ventricle in one minute. Cardiac output is equal to the heart rate multiplied by the stroke volume, the amount of blood pumped by a ventricle with each beat. Stroke volume, in turn, depends on several factors: the rate at which blood returns to the heart through the veins; how vigorously the heart contracts; and the pressure of blood in the arteries, which affects how hard the heart must work to propel blood into them. Normal cardiac output in an adult is about 3 liters per minute per square meter of body surface.
An increase in either heart rate or stroke volume—or both—will increase cardiac output. During exercise, sympathetic nerve fibers increase heart rate. At the same time, stroke volume increases, primarily because venous blood returns to the heart more quickly and the heart contracts more vigorously. Many of the factors that increase heart rate also increase stroke volume. For example, impulses from sympathetic nerve fibers cause the heart to contract more vigorously as well as increasing the heart rate. The simultaneous increase in heart rate and stroke volume enables a larger and more efficient increase in cardiac output than if, say, heart rate alone increased during exercise. In a healthy adult during vigorous exercise, cardiac output can increase six-fold, to 18 liters per minute per square meter of body surface.
DISEASES OF THE HEART
In the United States and many other industrialized countries, heart disease is the leading cause of death. By far the most common type of heart disease in the United States is coronary heart disease, in which the arteries that nourish the heart become narrowed and unable to supply enough blood and oxygen to the heart muscle. However, many other problems can also affect the heart, including congenital defects (physical abnormalities that are present at birth), malfunction of the heart valves, and abnormal heart rhythms. Any type of heart disease may eventually result in heart failure, in which a weakened heart is unable to pump sufficient blood to the body.
Coronary Heart Disease
Arterial Plaque
Atherosclerosis, or the narrowing of arteries due to the buildup of plaque along the inner lining, is the single most lethal condition in the United States. The plaques consist principally of fat and cholesterol deposits but also contain blood platelets, decomposing muscle cells, and other tissue. Since plaques usually reduce blood flow in major arteries, their presence represents a serious health risk, leading to heart disease, stroke, and the disruption of kidney and intestinal function. Poor circulation, also a result of plaque buildup, impairs movement of the limbs. Fragments of the plaques may break off and travel through the bloodstream to obstruct smaller vessels. The plaques unfortunately become larger and more numerous with age, especially in people with high levels of cholesterol in their diet and bloodstream.
Martin M. Rotker/Science Source/Photo Researchers, Inc.
Coronary heart disease is caused by atherosclerosis, the buildup of fatty material called plaque on the inside of the coronary arteries (see Arteriosclerosis). Over the course of many years, this plaque narrows the arteries so that less blood can flow through them and less oxygen reaches the heart muscle.
The most common symptom of coronary heart disease is angina pectoris, a squeezing chest pain that may radiate to the neck, jaw, back, and left arm. Angina pectoris is a signal that blood flow to the heart muscle falls short when extra work is required from the heart muscle. An attack of angina is typically triggered by exercise or other physical exertion, or by strong emotions. Coronary heart disease can also lead to a heart attack, which usually develops when a blood clot forms at the site of a plaque and severely reduces or completely stops the flow of blood to a part of the heart. In a heart attack, also known as myocardial infarction, part of the heart muscle dies because it is deprived of oxygen. This oxygen deprivation also causes the crushing chest pain characteristic of a heart attack. Other symptoms of a heart attack include nausea, vomiting, and profuse sweating. About one-third of heart attacks are fatal, but patients who seek immediate medical attention when symptoms of a heart attack develop have a good chance of surviving.
One of the primary risk factors for coronary heart disease is the presence of a high level of a fatty substance called cholesterol in the bloodstream. High blood cholesterol is typically the result of a diet that is high in cholesterol and saturated fat, although some genetic disorders also cause the problem. Other risk factors include smoking, high blood pressure, diabetes mellitus, obesity, and a sedentary lifestyle. Coronary heart disease was once thought to affect primarily men, but this is not the case. The disease affects an equal number of men and women, although women tend to develop the disease later in life than men do.
Stress Test
The stress test, also called an exercise electrocardiogram, measures the heart rate of a person during exercise and identifies any abnormal changes in heart function. Such changes may indicate the presence of coronary or arterial disease.
Mauro Fermariello/Photo Researchers, Inc.
Coronary heart disease cannot be cured, but it can often be controlled with a combination of lifestyle changes and medications. Patients with coronary heart disease are encouraged to quit smoking, exercise regularly, and eat a low-fat diet. Doctors may prescribe a drug such as lovastatin, simvastatin, or pravastatin to help lower blood cholesterol. A wide variety of medications can help relieve angina, including nitroglycerin, beta blockers, and calcium channel blockers. Doctors may recommend that some patients take a daily dose of aspirin, which helps prevent heart attacks by interfering with platelets, tiny blood cells that play a critical role in blood clotting.
Balloon Angioplasty
One of the most prevalent causes of heart attack is the buildup of plaque in the arteries leading to the heart. Balloon angioplasty is a common surgical treatment for this condition. If successful, the procedure eliminates the need for more involved surgery such as coronary bypass.
© Microsoft Corporation. All Rights Reserved.
In some patients, lifestyle changes and medication may not be sufficient to control angina. These patients may undergo coronary artery bypass surgery or percutaneous transluminal coronary angioplasty (PTCA) to help relieve their symptoms. In bypass surgery, a length of blood vessel is removed from elsewhere in the patient’s body—usually a vein from the leg or an artery from the wrist. The surgeon sews one end to the aorta and the other end to the coronary artery, creating a conduit for blood to flow that bypasses the narrowed segment. Surgeons today commonly use an artery from the inside of the chest wall because bypasses made from this artery are very durable. In PTCA, commonly referred to as balloon angioplasty, a deflated balloon is threaded through the patient’s coronary arteries to the site of a blockage. The balloon is then inflated, crushing the plaque and restoring the normal flow of blood through the artery. See also Coronary Heart Disease.
Congenital Defects
Some babies are born with a congenital heart defect (see Birth Defects). A wide variety of heart malformations can occur. One of the most common abnormalities is a septal defect, an opening between the right and left atrium or between the right and left ventricle. In other infants, the ductus arteriosus, a fetal blood vessel that usually closes soon after birth, remains open. In babies with these abnormalities, some of the oxygen-rich blood returning from the lungs is pumped to the lungs again, placing extra strain on the right ventricle and on the blood vessels leading to and from the lung. Sometimes a portion of the aorta is abnormally narrow and unable to carry sufficient blood to the body. This condition, called coarctation of the aorta, places extra strain on the left ventricle because it must work harder to pump blood beyond the narrow portion of the aorta. With the heart pumping harder, high blood pressure often develops in the upper body and may cause a blood vessel in the brain to burst, a complication that is often fatal. An infant may be born with several different heart defects, as in the condition known as tetralogy of Fallot. In this condition, a combination of four different heart malformations allows mixing of oxygenated and deoxygenated blood pumped by the heart. Infants with tetralogy of Fallot are often known as “blue babies” because of the characteristic bluish tinge of their skin, a condition caused by lack of oxygen.
In many cases, the cause of a congenital heart defect is difficult to identify. Some defects may be due to genetic factors, while others may be the result of viral infections or exposure to certain chemicals during the early part of the mother’s pregnancy. Regardless of the cause, most congenital malformations of the heart can be treated successfully with surgery, sometimes performed within a few weeks or months of birth. For example, a septal defect can be repaired with a patch made from pericardium or synthetic fabric that is sewn over the hole. An open ductus arteriosus is cut, and the pulmonary artery and aorta are stitched closed. To correct coarctation of the aorta, a surgeon snips out the narrowed portion of the vessel and sews the normal ends together, or sews in a tube of fabric to connect the ends. Surgery for tetralogy of Fallot involves procedures to correct each part of the defect. Success rates for many of these operations are well above 90 percent, and with treatment most children with congenital heart defects live healthy, normal lives.
Heart Valve Malfunction
Heart Valve Replacement Surgery
Surgeons use open-heart surgery to clear clogged arteries and to repair physical injuries to the heart caused by trauma, such as a heart attack. This form of surgery can also be used to correct congenital heart problems, including the replacement of defective heart valves.
David Leah/Science Source/Photo Researchers, Inc.
Malfunction of one of the four valves within the heart can cause problems that affect the entire circulatory system. A leaky valve does not close all the way, allowing some blood to flow backward as the heart contracts. This backward flow decreases the amount of oxygen the heart can deliver to the tissues with each beat. A stenotic valve, which is stiff and does not open fully, requires the heart to pump with increased force to propel blood through the narrowed opening. Over time, either of these problems can lead to damage of the overworked heart muscle.
Some people are born with malformed valves. Such congenital malformations may require treatment soon after birth, or they may not cause problems until a person reaches adulthood. A heart valve may also become damaged during life, due to infection, connective tissue disorders such as Marfan syndrome, hypertension, heart attack, or simply aging.
A well-known, but poorly understood, type of valve malfunction is mitral valve prolapse. In this condition, the leaflets of the mitral valve fail to close properly and bulge backward like a parachute into the left atrium. Mitral valve prolapse is the most common type of valve abnormality, affecting 5 to 10 percent of the United States population, the majority of them women. In most cases, mitral valve prolapse does not cause any problems, but in a few cases the valve’s failure to close properly allows blood to leak backwards through the valve.
Another common cause of valve damage is rheumatic fever, a complication that sometimes develops after an infection with common bacteria known as streptococci. Most common in children, the illness is characterized by inflammation and pain in the joints. Connective tissue elsewhere in the body, including in the heart, heart valves, and pericardium, may also become inflamed. This inflammation can result in damage to the heart, most commonly one of the heart valves, that remains after the other symptoms of rheumatic fever have gone away.
Valve abnormalities are often detected when a health-care professional listens to the heart with a stethoscope. Abnormal valves cause extra sounds in addition to the normal sequence of two heart sounds during each heartbeat. These extra heart sounds are often known as heart murmurs, and not all of them are dangerous. In some cases, a test called echocardiography may be necessary to evaluate an abnormal valve. This test uses ultrasound waves to produce images of the inside of the heart, enabling doctors to see the shape and movement of the valves as the heart pumps.
Damaged or malformed valves can sometimes be surgically repaired. More severe valve damage may require replacement with a prosthetic valve. Some prosthetic valves are made from pig or cow valve tissue, while others are mechanical valves made from silicone and other synthetic materials.
Arrhythmias
Arrhythmias, or abnormal heart rhythms, arise from problems with the electrical conduction system of the heart. Arrhythmias can occur in either the atria or the ventricles. In general, ventricular arrhythmias are more serious than atrial arrhythmias because ventricular arrhythmias are more likely to affect the heart’s ability to pump blood to the body.
Some people have minor arrhythmias that persist for long periods and are not dangerous—in fact, they are simply heartbeats that are normal for that particular person’s heart. A temporary arrhythmia can be caused by alcohol, caffeine, or simply not getting a good night’s sleep. Often, damage to the heart muscle results in a tendency to develop arrhythmias. This heart muscle damage is frequently the result of a heart attack, but can also develop for other reasons, such as after an infection or as part of a congenital defect.
Arrhythmias may involve either abnormally slow or abnormally fast rhythms. An abnormally slow rhythm sometimes results from slower firing of impulses from the SA node itself, a condition known as sinus bradycardia. An abnormally slow heartbeat may also be due to heart block, which arises when some or all of the impulses generated by the SA node fail to be transmitted to the ventricles. Even if impulses from the atria are blocked, the ventricles continue to contract because fibers in the ventricles can generate their own rhythm. However, the rhythm they generate is slow, often only about 40 beats per minute. An abnormally slow heartbeat is dangerous if the heart does not pump enough blood to supply the brain and the rest of the body with oxygen. In this case, episodes of dizziness, lightheadedness, or fainting may occur. Episodes of fainting caused by heart block are known as Stokes-Adams attacks.
Some types of abnormally fast heart rhythms—such as atrial tachycardia, an increased rate of atrial contraction—are usually not dangerous. Atrial fibrillation, in which the atria contract in a rapid, uncoordinated manner, may reduce the pumping efficiency of the heart. In a person with an otherwise healthy heart, this may not be dangerous, but in a person with other heart disease the reduced pumping efficiency may lead to heart failure or stroke.
By far the most dangerous type of rapid arrhythmia is ventricular fibrillation, in which ventricular contractions are rapid and chaotic. Fibrillation prevents the ventricles from pumping blood efficiently, and can lead to death within minutes. Ventricular fibrillation can be reversed with an electrical defibrillator, a device that delivers a shock to the heart. The shock briefly stops the heart from beating, and when the heartbeat starts again the SA node is usually able to resume a normal beat.
Most often, arrhythmias can be diagnosed with the use of an ECG. Some arrhythmias do not require treatment. Others may be controlled with medications such as digitalis, propanolol, or disopyramide. Patients with heart block or several other types of arrhythmias may have an artificial pacemaker implanted in their chest. This small, battery-powered electronic device delivers regular electrical impulses to the heart through wires attached to different parts of the heart muscle. Another type of implantable device, a miniature defibrillator, is used in some patients at risk for serious ventricular arrhythmias. This device works much like the larger defibrillator used by paramedics and in the emergency room, delivering an electric shock to reset the heart when an abnormal rhythm is detected.
Other Forms of Heart Disease
In addition to the relatively common heart diseases described above, a wide variety of other diseases can also affect the heart. These include tumors, heart damage from other diseases such as syphilis and tuberculosis, and inflammation of the heart muscle, pericardium, or endocardium.
Myocarditis, or inflammation of the heart muscle, was commonly caused by rheumatic fever in the past. Today, many cases are due to a viral infection or their cause cannot be identified. Sometimes myocarditis simply goes away on its own. In a minority of patients, who often suffer repeated episodes of inflammation, myocarditis leads to permanent damage of the heart muscle, reducing the heart’s ability to pump blood and making it prone to developing abnormal rhythms.
Cardiomyopathy encompasses any condition that damages and weakens the heart muscle. Scientists believe that viral infections cause many cases of cardiomyopathy. Other causes include vitamin B deficiency, rheumatic fever, underactivity of the thyroid gland, and a genetic disease called hemochromatosis in which iron builds up in the heart muscle cells. Some types of cardiomyopathy can be controlled with medication, but others lead to progressive weakening of the heart muscle and sometimes result in heart failure.
In pericarditis, the most common disorder of the pericardium, the saclike membrane around the heart becomes inflamed. Pericarditis is most commonly caused by a viral infection, but may also be due to arthritis or an autoimmune disease such as systemic lupus erythematosus. It may be a complication of late-stage kidney disease, lung cancer, or lymphoma; it may be a side effect of radiation therapy or certain drugs. Pericarditis sometimes goes away without treatment, but it is often treated with anti-inflammatory drugs. It usually causes no permanent damage to the heart. If too much fluid builds up around the heart during an attack of pericarditis, the fluid may need to be drained with a long needle or in a surgical procedure. Patients who suffer repeated episodes of pericarditis may have the pericardium surgically removed.
Endocarditis is an infection of the inner lining of the heart, but damage from such an infection usually affects only the heart valves. Endocarditis often develops when bacteria from elsewhere in the body enter the bloodstream, settle on the flaps of one of the heart valves, and begin to grow there. The infection can be treated with antibiotics, but if untreated, endocarditis is often fatal. People with congenital heart defects, valve damage due to rheumatic fever, or other valve problems are at greatest risk for developing endocarditis. They often take antibiotics as a preventive measure before undergoing dental surgery or certain other types of surgery that can allow bacteria into the bloodstream. Intravenous drug users who share needles are another population at risk for endocarditis. People who use unclean needles, which allow bacteria into the bloodstream, frequently develop valve damage.
Heart Failure
Jarvik Artificial Heart
During the early 1980s American physician William DeVries implanted the Jarvik-7 artificial heart into several patients. Although one patient with an implanted Jarvik-7 survived 620 days, this artificial heart caused many serious medical complications. Presently, artificial hearts are used only on a temporary basis until a human heart becomes available.
NIH/Science Source/Photo Researchers, Inc.
The final stage in almost any type of heart disease is heart failure, also known as congestive heart failure, in which the heart muscle weakens and is unable to pump enough blood to the body. In the early stages of heart failure, the muscle may enlarge in an attempt to contract more vigorously, but after a time this enlargement of the muscle simply makes the heart inefficient and unable to deliver enough blood to the tissues. In response to this shortfall, the kidneys conserve water in an attempt to increase blood volume, and the heart is stimulated to pump harder. Eventually excess fluid seeps through the walls of tiny blood vessels and into the tissues. Fluid may collect in the lungs, making breathing difficult, especially when a patient is lying down at night. Many patients with heart failure must sleep propped up on pillows to be able to breathe. Fluid may also build up in the ankles, legs, or abdomen. In the later stages of heart failure, any type of physical activity becomes next to impossible.
Almost any condition that overworks or damages the heart muscle can eventually result in heart failure. The most common cause of heart failure is coronary heart disease. Heart failure may develop when the death of heart muscle in a heart attack leaves the heart with less strength to pump blood, or simply as a result of long-term oxygen deprivation due to narrowed coronary arteries. Hypertension or malfunctioning valves that force the heart to work harder over extended periods of time may also lead to heart failure. Viral or bacterial infections, alcohol abuse, and certain chemicals (including some lifesaving drugs used in cancer chemotherapy), can all damage the heart muscle and result in heart failure.
Despite its ominous name, heart failure can sometimes be reversed and can often be effectively treated for long periods with a combination of drugs. Millions of people with heart failure are alive in the United States today. Medications such as digitalis are often prescribed to increase the heart’s pumping efficiency, while beta blockers may be used to decrease the heart’s workload. Drugs known as vasodilators relax the arteries and veins so that blood encounters less resistance as it flows. Diuretics stimulate the kidneys to excrete excess fluid.
A last resort in the treatment of heart failure is heart transplantation, in which a patient’s diseased heart is replaced with a healthy heart from a person who has died of other causes (see Medical Transplantation). Heart transplantation enables some patients with heart failure to lead active, healthy lives once again. However, a person who has received a heart transplant must take medications to suppress the immune system for the rest of his or her life in order to prevent rejection of the new heart. These drugs can have serious side effects, making a person more vulnerable to infections and certain types of cancer.
The first heart transplant was performed in 1967 by South African surgeon Christiaan Barnard. However, the procedure did not become widespread until the early 1980s, when the immune-suppressing drug cyclosporine became available. This drug helps prevent rejection without making patients as vulnerable to infection as they had been with older immune-suppressing drugs.
A shortage of donor hearts is the main limitation on the number of transplants performed. Some scientists are looking for alternatives to transplantation that would help alleviate this shortage of donor hearts. One possibility is to replace a human heart with a mechanical one. A permanent artificial heart was first implanted in a patient in 1982. Artificial hearts have been used experimentally with mixed success. They are not widely used today because of the risk of infection and bleeding and concerns about their reliability. In addition, the synthetic materials used to fashion artificial hearts can cause blood clots to form in the heart. These blood clots may travel to a vessel in the neck or head, resulting in a stroke. Perhaps a more promising option is the left ventricular assist device (LVAD). This device is implanted inside a person’s chest or abdomen to help the patient’s own heart pump blood. LVADs are used in many people waiting for heart transplants, and could one day become a permanent alternative to transplantation.
Some scientists are working to develop xenotransplantation, in which a patient’s diseased heart would be replaced with a heart from a pig or another species. However, this strategy still requires a great deal of research to prevent the human immune system from rejecting a heart from a different species. Some experts have also raised concerns about the transmission of harmful viruses from other species to humans as a result of xenotransplantation.